安全•安心な小麦栽培のために

ドリフト防止のための

スプレーヤを活用するためのポイント

〈スプレーヤを活用するためのキーワード＞

1．ノズルの選定
2．面積当たり散布量のチェック
3．散布粒子の漂流飛散（ドリフト）軽減

1．ノズルの選完

（1）各種ノズルの特性

（1）ホローコーソノズル（中空䧸型ノズル）

「中子」と呼ばれる円板が回転するタイプで，散布パターンが中空の円錐状
北海道で用いられる「カニ目2頭ロノズル」も，このタイプに分類〈特徴〉 細かい粒径の散布粒子が多い

ホローコーンノズル（TeeJet社製）

カニ目2頭ロノズル

②ラツトファンノズル（扇型ノズル）

細長いスリットから薬液を噴霧するタイプで，散布パターンが扇状「畑用少量散布ノズル」も，このタイプに分類〈特徴〉 散布粒子の粒径がホローコーンノズルよりも粗い

畑用少量散布ノズル（ヤマホ社製）

（3）ラットファンノズルハインタイフ）

2 方向に薬液を散布するフラットファン
（扇型ノズル ツインタイプ）
ノズルで，散布パターンが扇状
＜特徴〉 薬液の散布角度が斜め上方の2方向

ツインノズル（TeeJet社製）

（4）Air Induction ノズル（空気混入型ノズル）

ノズル内に空気を送り込んで粒子径の大きい「シャボン玉」を作るノズル国産のドリフト低減ノズルはすべてAir Inductionタイプのノズル ＜特徴〉 大粒径の散布粒子となるため，ドリフトの発生が少ない

ホローコーンノズル（TeeJet社製）

Air Induction ノズルから噴霧された粒子の拡大写真 （イギリス環境•食料•農村地域省ホームページより）

【ドリフト低減ノズル（緊プロ開発機）】

Dカットノズル （共立製）

キリナシESYノズル （ヤマホ製）

エコシャワー
（丸山製作所製）

（2）散布圧力の影響

散布圧力が増加すると，ノズル吐出量が増加

また，圧力の増加に伴い微粒化し，ドリフトしやすい $100 \mu \mathrm{~m}$ 以下の粒子割合が増加

圧カとノズル吐出量の関係（中央農試）

圧力と粒子径の関係［ホローコーンノズル］
（Combellack他，1980）

【散布玨力設定についての考え方】

－国産のノズル $\rightarrow 10 \sim 15 \mathrm{~kg} / \mathrm{cm}^{2}$ の範囲に設定 －海外の輸入ノズル \rightarrow 最大 $5 \mathrm{~kg} / \mathrm{cm}^{3}$ 程度の圧力で使用

面積当たりの散布量（ $\ell / 10 a)$ は，以下の式を用いて算出
$\begin{aligned} & \text { 面積当たり } \\ & \text { 散布量 } \\ & (\ell / 10 a)\end{aligned}=\frac{\text { ノズル吐出量 }(e / \text { 秒 } / \text { 個 }) \times \text { ノズル個数 }(\text { 個 }) \times 1,000[10 a \text { 換算 }]}{\text { 散布幅 }(m) \times \text { 作業速度 }(m / \text { 秒 })}$

【計算例】

$$
100(\ell / 10 \mathrm{a})=\frac{0.03(\ell / \text { 秒 } / \text { 個 }) \times 80 \text { (個 }) \times 1,000}{24(\mathrm{~m}) \times 1(\mathrm{~m} / \text { 秒 })}
$$

※散布量に応じた作業速度を求める場合（ 80 l／ 10 aに設定）

$$
1.25(\mathrm{~m} / \text { 秒 })=\frac{0.03(\ell / \text { 秒 } / \text { 個 }) \times 80(\text { 個 }) \times 1,000}{24(\mathrm{~m}) \times 80(\ell / 10 \mathrm{a})}
$$

ノズルの叶出量蒯定に必要なもの

－ストップウォッチ
－メスシリンダなど（容積の場合）
もしくはバケツ＋はかり（重量の場合）

測定方法

①）タンクに清水を入れる
（2）一定の時間（ 30 秒～1分程度）， ノズルから吐出される水を回収

【ノズル吐出量の測定方法】
（3）水の容積，もしくは重量を測定

噴板の減耗に注意を

噴板は水和剤などに含まれる粒子が高圧で通過することにより減耗
\rightarrow 散布量が増大 \longrightarrow 吐出量をチェック，定期的に交換する

噴板は減耗することで，穴径が広がり吐出量が増加
（十勝での調查事例，2011）

（1）粒子径の影響

一般的に $100 \mu \mathrm{~m}$ 以下の粒子がドリフ トしやすいと言われる
この粒径は，「細かい霧」より小さいサイズ

【粒子径の目安】

粒径 $(\mu \mathrm{m})$	雨•霧の状態
2,000	大雨
420	小雨
300	
150	細かい霧雨
100	細かい霧
25	燂霧

粒子経が細かいと，風の影響によりドリフト量が増加する

（Profi社資料より）

粒経

$\square \begin{aligned} & 50 \mu \mathrm{~m} \\ & 200 \mu \mathrm{~m}\end{aligned} \square \begin{aligned} & 100 \mu \mathrm{~m} \\ & 400 \mu \mathrm{~m}\end{aligned}$

（ジョージア大学，1997）

（Keith Jones 2007）

（3）風速の影響

風速が $3 \mathrm{~m} / \mathrm{s}$ 以上の場合には，農薬散布作業は行わない

（4）ドリフト低減対策

（1）ドリフト低減ノズルの活用

Air Inductionノズルや国産のドリフト低減 ノズルなどを活用
また，散布圧力はできるだけ低めの設定が良い

散布位置からの距離
【上：慣行ノズル，下：ドリフト低減ノズル（風速1．7～2．7m】

2m
（京都府ホームページより）

（Keith Jones 2007）

（2）エアアシストスプレーヤの利用

エアアシストスプレーヤもドリフト低減効果が認められる

（Keith Jones 2007）

③高温時の罌発にも注意を

高温時の薬剤散布では，微粒子が作物に到達 する前に空気中で蒸発することがある \Rightarrow 高温時の薬剤散布は控えた方が良い
（アイオワ大学ホームページより）
【粒径と蒸発時間（Wolf，1997）】

散布時の粒径（ $\mu \mathrm{m}$ ）	自由落下時の終速度（cm／s）	水分蒸発後の粒径（ $\mu \mathrm{m}$ ）	水分が蒸発する までの時間（s）	散布微自由落下と なるまでの距離（cm）
20	1.2	7	0.3	2.5
50	7.5	17	1.8	7.5
100	82.8	33	7.0	22.5
150	51.0	50	16.0	40.0
200	72.0	67	29.0	62.5

注）設定条件：気温 $32^{\circ} \mathrm{C}$ ，湿度 36% ，散布圧力 $1.8 \mathrm{~kg} / \mathrm{cm}^{2}$ ，薬液濃度 3.75%

感水紙を活用しよう

感水紙は，水滴が着くと変色する成分を含む ことで，

付着の状況や圃場外のドリフト状況のチェ ックが可能

水滴が垂れる ランオフ現象発生
（Stewardship Communityホームページより）

（Sprayers101ホームページより—部改）

執筆者：北海道立総合研究機構農業研究本部 中央農業試験場生産研究部 研究主査 白旗

雅樹

